DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES

dream-lab.in | Indian Institute of Science, Bangalore

Benchmarking Distributed Stream Processing Platforms for IoT Applications

Anshu Shukla and Yogesh Simmhan

Department of Computational & Data Sciences

Indian Institute of Science

Eighth TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2016)

©DREAM:Lab, 2016

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

5-Sep-16

DREAM:Lab

Motivation: Internet of Things (IoT)

- Billions of sensors monitoring physical infrastructure, human beings and virtual entities in realtime, distributed across network
- Data streams drive realtime processing, analytics & decisions making
- Streaming applications control feedback on physical structure, notifications to users

*

Data Platforms for IoT

- MapReduce/Hadoop
 - Data Handled • Large volume, high latency on distributed hosts
 - Training models over sensor data archives
- **Complex Event Processing**
 - Declarative pattern matching over event tuples
 - Detect critical events, changing trends
- **Distributed Stream Processing Systems** (DSPS)
 - Fast data rates, Weaker message order
 - Distributed execution, fault-tolerant
 - Flexible composition & responsive coordination of Observe, Orient, Decide, Act (OODA) loop

Size of the

- **Realtime Processing**
 - Mission critical apps, Strong latency guarantees ۲
 - Embedded medical devices, power networks

Time to Act

*Big Data Analytics Platforms for Real-time Applications in IoT, Yogesh Simmhan & Srinath Perera, Big Data Analytics: Methods and Applications, Eds. Saumyadipta Pyne, B.L.S. Prakasa Rao, S.B. Rao, 2016 (to appear)

Distributed Stream Processing System [DSPS]

- Scalable, Distributed and fault-tolerant computations over data streams
- Composition of streaming applications
 - Directed Acyclic Graph (DAG) of tasks and message streams
 - Unbounded sequence of opaque messages as streams
 - User-define logic blocks as tasks

Need for a DSPS Benchmark for IoT

- Uniformly compare performance of DSPS for IoT applications
 - Helps select DSPS platform for IoT domain
- Understanding gaps in capabilities of DSPS
 - Composition of meaningful loT applications
- Benchmark design goals
 - Categories & platform-independent implementations of
 - » Common IoT tasks
 - » Classes of non-trivial IoT applications
 - Different real-world IoT data streams

Gaps in related work

- IoTAbench: Emphasis on scalable synthetic data generation and not on application logic
- *CityBench:* RDF stream processing systems
- Stream Bench: 7 micro-benchmarks on 4 different synthetic workload suites, does not consider aspects unique to IoT applications and streams
- Spark Bench: Specific to Apache Spark, goal is to identify spark tuning parameters, not platform-agnostic
- Yahoo Cloud Serving Benchmark (YCSB): Compares different key-value stores on the Cloud
- Bigbench: Simulates online retail enterprise data with queries covering velocity, volume and variety of data

Contributions

- **1. Classification** of essential tasks & IoT applications, and characteristics of their data sources
- 2. Propose IoT Benchmark for DSPS
 - a. Micro-benchmark tasks implemented from the above classification
 - b. Reference IoT applications implemented for
 - Pre-processing & statistical summarisation (STATS)
 - Predictive Analytics (PRED)
- 3. Practical **evaluation** on Apache Storm DSPS

DREAM:Lab

Classification & Metrics

IoT characteristics, DSPS capabilities, Performance Metrics

5-Sep-16

Eighth TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2016)

Dataflow Semantics

- Dataflow patterns determine consumption & routing of messages
- Selectivity ratio: Number of output messages emitted by a task on consuming a logical unit input message(s)
 - Decide input rate for downstream tasks
- Number of tasks, Edge Degree, Length/ Width of Dataflow affect performance, scalability

IoT Data stream Characteristics

- Input Throughput
 - Rate at which messages enter the source tasks of the application dataflow
 - Determines the parallelism of tasks in DSPS, ability to scale and meet latency goals
- Throughput Distribution
 - Variation of input throughput over time.
 - E.g. High demand for cabs in morning/evenings
 - Dynamic load balancing, elasticity
 - CITY dataset [1]: Environmental sensors at 7 cities across 3 continents;
 - TAXI dataset [2]: Smart transportation messages from 2M trips of New York city taxis
- Impact of Message size, temporal ordering can also be considered

(b) TAXI @1000×msg/sec

IoT Streaming Application Classes

- Extract-Transform-Load (ETL) and Archival
 - Pre-processing like data format transformations, normalizing observation units, interpolate missing data items
 - Archive a copy of the data offline

Summarization and Visualization

- Statistical aggregation and analytics to "orient" the decision
- Generate visualizations to present it to end-users and decision makers

Prediction and Pattern Detection

- Prediction to determine the future state and "decide" if any reaction is required
- Identify the patterns of interest
- Classification and notification
 - Mapping decisions to specific "actions"
 - Notifying the entities in IoT system

Categories of IoT Tasks

- Parse parsing encoded messages from the stream sources [XML, CBOR, JSON, SenML]
- Filter filtering on specific attribute values [bloom, range filter]
- Statistical Analytics finding outliers, second order moments, distinct count
- Predictive Analytics predictions using past and current messages, online model training [WEKA library, R Packages]
- Pattern Detection identify patterns across events using CEP engines
- Visual Analytics periodic charts for streaming application as part of the dataflow [D3.js, JFreeChart]
- IO Operations accessing external storage or messaging services to access data [file/Cloud storage, database ops, pub-sub]

Evaluation Metrics

- Metrics to meet performance & scalability needs for IoT applications from DSPS
- Latency
 - Time between message consumed at source task(s) and their causally dependent messages generated at sink task(s), lesser is better
 - Decides task parallelism for required input rate
- Peak Rate
 - Aggregated peak output message rate generated from sink task(s), higher is better
 - Estimated resource requirement for required input rate
- Jitter
 - Variation in observed vs. expected output throughput based on input rate and task selectivity, close to zero is better
 - Stability of task for given rate with sustainable queuing of messages
- CPU and Memory Utilisation
 - Uniform distribution of load on VMs, hotspots causing bottlenecks
 - Identify which VMs are the potential bottlenecks/under-used, scale-out/in

DREAM:Lab

5-Sep-16

Benchmarks

Eighth TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2016)

Datasets used

Dataset	Attributes	Format	$\mathbf{Size}(bytes)$	Peak Rate (<i>msg/sec</i>)	Distribution
\mathbf{CITY} [1]	9	CSV	100	7,000	Normal
TAXI $[11]$	17	CSV	191	4,000	Bimodal

- **CITY:** *Urban environmental sensing* data from 90 sensors at 7 cities, sampled per minute
 - Scaled to 1000x to simulate 90,000 sensors
 - timestamp, source, long, lat, temperature, humidity, light, dust, airquality
- TAXI: Smart transportation messages from 2M trips from 20K taxis in NYC, one per trip
 - Bi-modal rate distribution [morning & evening commutes]; 1000x scaling for temporal freq.
 - Medallion, Hack_license, Pickup_datetime, Dropoff_datetime, Trip_time, Trip_distance, Pickup_long, Pickup_lat, Dropoff_long, Dropoff_lat, Payment_type, Fare_amount, Surcharge, Mta_tax, Tip_amount, Tolls_amount, Total_amount

http://map.datacanvas.org/#!/data
 http://www.debs2015.org/call-grand-challenge.html

(b) TAXI @1000× msg/sec

Micro-benchmark Tasks

Task Name	Code	Category	Pattern	σ Ratio	State
XML Parsing	XML	Parse	Transform	1:1	No
Bloom Filter	BLF	Filter	Filter	1:0/1	No
Average	AVG	Statistical	Aggregate	N:1	Yes
Distinct Appox. Count	DAC	Statistical	Transform	1:1	Yes
Kalman Filter	KAL	Statistical	Transform	1:1	Yes
Second Order Moment	SOM	Statistical	Transform	1:1	Yes
Decision Tree Classify	DTC	Predictive	Transform	1:1	No
Multi-variate Linear Reg.	MLR	Predictive	Transform	1:1	No
Sliding Linear Regression	SLR	Predictive	Flat Map	N:M	Yes
Azure Blob D/L	ABD	IO	Source/Transform	1:1	No
Azure Blob U/L	ABU	IO	\mathbf{Sink}	1:1	No
Azure Table Query	ATQ	IO	Source/Transform	1:1	No
MQTT Publish	MQP	IO	Sink	1:1	No

Benchmarks available at http://github.com/dream-lab/bm-iot

Application Benchmarks [STATS]

- Streaming statistical analysis and filtering of data
 - Data filtering of outliers on individual observation types using a Bloom filter
 - Statistical analytics on observations from individual sensor/taxi IDs
 - Approximate count of distinct readings for every observation type
 - Publishing the results using MQTT task
 - Different types of patterns, selectivities, task parallelisms
 - » Application uses Hash, filter, Aggregate as dataflow patterns

(a) Pre-processing & statistical summarization dataflow (STATS)

Benchmarks available at http://github.com/dream-lab/bm-iot

Application Benchmarks [PRED]

- Streaming predictive analysis of data
 - Timer Source and blob read for reading updated model files using timestamp
 - Decision tree uses trained model to classify messages into classes [good,average or poor air quality]
 - Multi-Variate Linear regression & Average used for finding the error estimate
 - Group and Viz. Batch and plot the summarised results for different observations
 - Blob write Result files are written to Cloud storage for hosting on a portal
 - » Application uses duplicate, join, aggregate as dataflow patterns
 - » Multiple source of Input streams

(b) Predictive Analytics dataflow (PRED)

Benchmarks available at http://github.com/dream-lab/bm-iot

DREAM:Lab

Experiments

Apache Storm 1.0.0

5-Sep-16

Eighth TPC Technology Conference on Performance Evaluation & Benchmarking (TPCTC 2016)

Experimental setup

Apache Storm 1.0.0 DSPS

- Executed on Microsoft Azure Cloud VMs
- OpenJDK 1.7 and CentOS
- Micro-Benchmarks
 - Benchmark task runs on one exclusive D1 VM, 1 thread
 - » 1-core Intel Xeon E5@2.2 GHz, 3.5 GiB RAM, 50 GiB SSD
 - » Used to finding peak rate
 - Master services, source & sink tasks run on a D8 VM
 - » 8-core Intel Xeon E5@2.2 GHz, 28 GiB RAM, 400 GiB SSD
 - » Ensures spout is not bottleneck at peak rate
- Application Benchmarks [STATS & PRED]
 - D8 VMs as per input rate for all tasks of the dataflow
 - Experiments run for ~ 10 mins
 - 1000× scaling ⊃ 7 days of data for CITY and TAXI

Application runtime = $\frac{7 \text{ days}*24 \text{ hours}*60 \text{ mins}}{1000 * scaling}$ = 10.08 mins

Results: Micro-benchmark

- Peak rate is 3,000 msg/sec or higher except XML parsing & Azure ops being CPU (310 msg/sec) and SLA (5 msg/sec) bound
 Wide variability in latency box plots
- - Non-uniform task execution times, slow executions causes input tuples to queue up
 - Higher input rates are more sensitive to even small per-tuple framework overhead

Results: Micro-benchmark

- Jitter: Close to zero values indicates stability of Storm at peak rate without unsustainable queuing
 CPU and MEM utilization
- - Single-core VM used at 70% or above except Azure tasks being I/O driven
 - High memory utilization for tasks supporting high throughput indicates messages waiting in memory queue

Results: Application benchmark

- PRED: Tall latency box plot due to variability in WEKA task execution times [observed in micro-benchmarks for DTC and MLR]
- Jitter remains close to zero, indicating sustainable performance

DREAM:Lab

Results: Application benchmark

- TAXI : CPU is wider due to bimodal distribution of input rate
- X-axis represents the number of VMs required to support the given input distribution

Summary & Future Work

- Classified essential tasks, IoT applications & data stream characteristics
- Metrics for performance & scalability needs for IoT applications from DSPS
- Evaluation of Micro and application benchmarks on Apache storm 1.0.0 for CITY and TAXI datasets in distributed environment
 - Indicates the viability of Apache Storm for IoT Application Domains
- Introducing new tasks to the task categories [SenML, CBOR parsing, Annotation]
- Benchmark and comparison of Apache Spark Streaming with Storm
- Using CEP engine like Siddhi as Tasks in Pattern recognition category

Thank you!

Contact : shukla@grads.cds.iisc.ac.in

